
CS106A Handout 24
Winter 2012-2013 February 20, 2013

Assignment 5: Array Algorithms*

Introduction

Arrays are a fundamental and versatile tool for representing, manipulating, and transforming data.
In this assignment, you'll see how arrays can be applied to generate and manipulate music and im-
ages.

Like the first two assignments for the course, this assignment consists of three smaller programs.
Part One of this assignment (Steganography) explores how arrays can be used to represent im-
ages and how simple transformations on images can be used to hide secret messages. Part Two of
this assignment (Tone Matrix) lets you use arrays to play sounds and construct an awesome mu-
sical instrument. Part Three of this assignment (Histogram Equalization) shows how you can
use arrays in a variety of contexts to manipulate photographs and recover meaningful data from
overexposed or underexposed pictures.

By the time you've completed this assignment, you will have a much deeper understanding of
how to use arrays to model and solve problems. You'll also be able to share secret messages with
your friends, compose music, and fix all your old family photos.

Due Monday, March 4 at 3:15PM

* This is a brand-new assignment, and we're really excited to be rolling it out! If you have any suggestions on how
to improve this assignment in future quarters, please don't hesitate to contact your section leader, Gil, or Keith
with feedback!

 2 / 17

Part One: Steganography*

Suppose that you want to send a secret message to someone else without other people being able to
read it. One way that you could do so would be to encrypt the message in a way where only the recipi-
ent could decrypt it. To everyone else, the message would look like total gibberish. This approach to
transmitting secret messages is called cryptography.

An entirely different way to deliver a secret message would be to send the message in a format that no
one would suspect carries a secret message. For example, suppose that I were to send you the follow-
ing note:

Andrew Luck is quarterback for the Indianapolis Colts. He plays football excellently!

If you just read the message by itself, it seems to be a comment on Stanford's (awesome) former quar-
terback. However, if you look closer, you can see that some of the letters have been bolded. If you just
read those letters, you get back the message nubian ibex, which was the secret message I was trying to
send to you. Notice that the actual message to transmit isn't encrypted – anyone who knows where to
look for the message can still read it – but it has been hidden so that an observer who didn't know to
look for it wouldn't find it.

The art and science of sending secret messages by concealing the existence of the secret message is
called steganography. In this part of the assignment, you'll build a system for hiding messages in im-
ages so that you can send secret messages to your friends.

The specific type of steganography you'll be doing in this assignment is called image steganography.
In image steganography, you will hide a black-and-white image (the secret message) inside of a full-
color image in a way that no human eyes could ever detect. As an example of this, consider the follow-
ing picture of a stegosaurus:

It looks like a totally normal picture, but surprisingly there is a second image embedded within it: a
beautifully, artistically rendered and scientifically accurate picture of a Tyrannosaurus Rex:

* The steganography assignment was inspired by Julie Zelenski's steganography assignment given in a previous quarter's
CS107. It also draws inspiration from Brent Heeringa and Thomas P. Murtagh's “Stego my Ego” assignment from Nifty
Assignments.

 3 / 17

How is this image steganographically hidden within the steganosaurus? The answer has to do with the
way that computers represent images. Recall from lecture that each pixel in an image is represented as
the intensity of its red, green, and blue components. Each of these components ranges from 0 to 255,
with 0 meaning “none of this color” and 255 meaning “the maximum possible intensity of this color.”

Although every different combination of red, green, and blue produces a different color, the human eye
is not sensitive enough to notice minor changes between closely-related RGB triplets. For example, the
color magenta would be represented by the RGB triplet (255, 0, 255), with the red and blue compo-
nents at maximum and the green component at zero. The related RGB triplet (254, 0, 255) is also an
intensely magenta color. While (254, 0, 255) is not exactly the same color as (255, 0, 255), there is al-
most no perceptible difference between the two. If you were to look at them one after the other you'd
be hard-pressed to find the difference between them. Our steganography system will use the fact that
the human eye cannot tell the difference between two pixels of subtly different color, though the com-
puter can distinguish them perfectly.

Our goal will be to hide secret black-and-white images within full-color images. To do this, we'll start
off with two images: the secret black-and-white image, and the full-color master image. For simplicity,
we'll assume that these images are always the same size as one another. We will then process the
black-and-white image one pixel at a time, making minor adjustments to the corresponding pixels in
the color image. The changes we will make are so small that no human will be able to detect that the
color image has changed.

The specific approach we will use is the following. Beginning with the secret black-and-white image
and the full-color master image, we will process pairs of corresponding pixels from the two images one
at a time. We will then transform the colors in the master image as follows:

• If the pixel from the secret message is black, make the red channel of the color pixel odd.

• If the pixel from the secret message is white, make the red channel of the color pixel even.

For example, if the secret message pixel is black and the color image pixel has color (255, 0, 127), we
would leave the color image pixel unchanged because its red channel (255) is already odd. However, if
the pixel from the secret message was black and the color pixel had RGB value (100, 100, 100), we
would change the pixel from the color image to have RGB value (101, 100, 100), which is a value close
to the original pixel value but which has an odd number for its red channel. Similarly, if the pixel from
the secret message was white and the color pixel had RGB value (0, 0, 0), we would leave the original

 4 / 17

pixel untouched because its red channel (0) is already even. However, if the secret pixel was white and
color pixel had value (255, 255, 255), we would change the color pixel to (254, 255, 255), which is
close to the original color but now has an even number in its red channel.

As an example, suppose that we have a black-and-white image and a color image, which are repre-
sented below (the red channel in the color image has been highlighted):

255, 0, 100 137, 42, 10 106, 103, 4 27, 18, 28 31, 41, 59

86, 75, 30 123, 58, 13 0, 255, 0 161, 08, 0 45, 90, 45

66, 99, 10 11, 5, 9 20, 8, 0 100, 50, 25 1, 10, 100

0, 0, 0 255, 0, 0 123, 57, 11 0, 0, 255 70, 70, 70

83, 69, 69 89, 79, 85 154, 161, 1 140, 144, 2 124, 145, 3

Black-and-White Image Original Color Image
To embed the black-and-white image inside the color image, we would adjust the red channels of the
color image as follows:

254, 0, 100 137, 42, 10 107, 103, 4 27, 18, 28 30, 41, 59

87, 75, 30 122, 58, 13 0, 255, 0 160, 08, 0 45, 90, 45

67, 99, 10 10, 5, 9 21, 8, 0 100, 50, 25 1, 10, 100

1, 0, 0 254, 0, 0 122, 57, 11 0, 0, 255 71, 70, 70

82, 69, 69 89, 79, 85 155, 161, 1 141, 144, 2 124, 145, 3

Black-and-White Image Modified Color Image
Take a few minutes to make sure you understand how the colors from the original image were trans-
formed to produce this new image.

Once we have encoded our secret message within the original image, we can easily recover it by look-
ing at all the pixels of the color image one at a time. For each pixel in the color image, if its red chan-
nel is an odd number, the corresponding pixel in the black-and-white image must be black. Otherwise,
the corresponding pixel must be white.

The Assignment

Your job in Part One of this assignment is to implement the methods from the SteganographyLogic
class. These methods are responsible for hiding and finding hidden messages in images.

In our framework, the color image will be represented as a GImage. As mentioned in lecture, you can
get a 2D array of the pixels of a GImage by calling the getPixelArray() method. From there, you can
extract the red, green, and blue components of any individual pixel by passing that pixel into the meth-
ods GImage.getRed, GImage.getGreen, and GImage.getBlue. Given red, green, and blue channels
of a pixel, you can create a pixel of that color using the GImage.createRGBPixel method.

The black-and-white image will be represented as a boolean[][] two-dimensional array. White pixels
are represented as false, while black pixels are represented as true. This means that

If the secret pixel is black, it is represented as true, and you should make the red channel odd.

If the secret pixel is white, it is represented as false, and you should make the red channel even.

The SteganographyLogic class is reprinted below:

 5 / 17

public class SteganographyLogic {
/**
 * Given a GImage containing a hidden message, finds the hidden message
 * contained within it and returns a boolean array containing that message.
 * <p>
 * A message has been hidden in the input image as follows. For each pixel
 * in the image, if that pixel has a red component that is an even number,
 * the message value at that pixel is false. If the red component is an odd
 * number, the message value at that pixel is true.
 *
 * @param source The image containing the hidden message.
 * @return The hidden message, expressed as a boolean array.
 */
public static boolean[][] findMessage(GImage source) {

/* TODO: Implement this! */
}

/**
 * Hides the given message inside the specified image.
 * <p>
 * The image will be given to you as a GImage of some size, and the message
 * will be specified as a boolean array of pixels, where each white pixel is
 * denoted false and each black pixel is denoted true.
 * <p>
 * The message should be hidden in the image by adjusting the red channel of
 * all the pixels in the original image. For each pixel in the original
 * image, you should make the red channel an even number if the message
 * color is white at that position, and odd otherwise.
 * <p>
 * You can assume that the dimensions of the message and the image are the
 * same.
 * <p>
 *
 * @param message The message to hide.
 * @param source The source image.
 * @return A GImage whose pixels have the message hidden within it.
 */
public static GImage hideMessage(boolean[][] message, GImage source) {

/* TODO: Implement this! */
}

}

This class contains two methods that you will need to implement. The first, findMessage, takes as in-
put a GImage containing a secret message that has been hidden using the algorithm described on the
previous page. Your task is to recover the hidden message from that image by returning a two-dimen-
sional array of booleans corresponding to the white and black pixels of the hidden message. The sec-
ond, hideMessage, takes in a 2D array of booleans representing the secret message and a GImage in
which the secret message should be hidden, then uses the algorithm described earlier to hide that mes-
sage in a GImage.

We have provided you a Steganography program that uses your implementation of the methods de-
scribed above to hide and recover secret messages. When you first run the program, you will see two
areas, one labeled “Secret Drawing” and the other labeled “Master Image.” You can draw a picture in
the region labeled “Secret Drawing,” and can use the “Choose Image” button to pick an image into
which you will embed that secret drawing.

 6 / 17

If you load an image that contains an hidden message and click the “Recover Message” button, the pro-
gram will call your findMessage function and show the secret message in the panel marked “Secret
Drawing.” If the original image didn't contain a secret message, then you're likely to get back garbage
patterns, since your findMessage function will still read back the red channels and try to reconstruct
the image.

If you load an image and click the “Hide Message” button, the program will call your hideMessage
function to hide your secret drawing inside the master image. It will then let you save the resulting im-
age to a file so that you can share it with your friends or recover the secret message later. Be careful
when saving images, since the program will let you overwrite existing files.

Here is a screenshot of this program in action:

Advice, Tips, and Tricks

For this portion of the assignment, we strongly suggest starting off by implementing the findMessage
function and testing it out on the sample images that we've provided for you. That way, you can con-
firm that your logic for decoding messages works properly before you test it out in conjunction with
your hideMessage function.

When implementing hideMessage, make sure that you never try increasing the value of the red chan-
nel above 255 or decreasing it below 0. If you do, the values will “wrap around” and start producing
images with unusual bright or dark spots in them. If you plan out in advance how you will change the
red channel values to make them even or odd, you can find a way to do so that never will overflow or
underflow the channel values.

 7 / 17

Part Two: Tone Matrix*

In this part of the assignment, you'll build a really nifty piece of software that combines music and vi-
suals – the Tone Matrix!

The best way to build up an understanding of the Tone Matrix is to try out the sample version of the
program, which is available on the course website.

The Tone Matrix is a 16 × 16 grid of lights, all of which are initially turned off. Each of the lights rep-
resents a musical note at a specific point in time. Lights further to the left are played before the lights
further to the right. The height of a light determines which note is played: lights toward the bottom of
the Tone Matrix have a lower pitch than lights toward the top of the Tone Matrix. All lights on the
same row play the same note and correspond to playing that note at different points in time. If multiple
lights are turned on in the same column, they will be played simultaneously.

You can see this here:

When you start up the Tone Matrix application, you will see a blank grid with a vertical line sweeping
from the left to the right. As you click on the lights to turn them on, the Tone Matrix will start to play
music whenever the sweeping line passes over those lights.

Your job in this assignment is to generate the sound that will be played by the Tone Matrix. We'll han-
dle all of the logic necessary to display the Tone Matrix, draw the sweeping line, and interact with the
user. You will be responsible for converting the lights in the Tone Matrix into sound samples that will
be sent to the speakers.

* The Tone Matrix assignment was inspired by André Michelle's most amazing ToneMatrix program, which is available
online at http://tonematrix.audiotool.com/. The starter file uses a modified version of Kevin Wayne and Robert
Sedgewick's StdAudio.java file, developed at Princeton University, to generate sound.

http://tonematrix.audiotool.com/

 8 / 17

Recall from lecture that computers can represent sound as an array of the intensities of the sound over
time. To play sound, the computer can either play an existing sound (by loading the sound from a file
on disk), or it can generate a new sound from scratch (by generating the sound wave algorithmically).

The Tone Matrix plays music by using a combination of these two approaches. Specifically, the Tone
Matrix generates music by taking 16 existing sounds (one for each note that can be played) and con-
structing new sounds by combining them together based on which lights are lit up. For example, if a
column in the Tone Matrix had lights two, four, six, and eight lit up, then the Tone Matrix would gener-
ate a sound sample formed by combining together the second, fourth, sixth, and eighth existing sam-
ples, then playing the newly-generated sound sample.

How exactly would we combine together multiple sound samples? One interesting observation is that
if you take two different sound samples (represented as arrays of doubles between -1 and +1) and then
add up the values in those arrays pairwise, you end up with a new sound sample corresponding to both
sounds playing at once. Below is an example of this – the top two waves are the input waves, and the
bottom wave is the wave produced by playing both waves at the same time:

1.00 0.67 0.33 0 -0.33 -0.67 -1.00 -0.67 -0.33 0 0.33 0.67

2.00 1.67 -0.67 -1.0 0.67 0.33 -2.0 -1.67 0.67 1.00 -0.67 -0.33

1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 -1.00

There is one minor problem with this approach. The speakers have a maximum intensity that they can
physically produce. Our sound libraries represent this displacement using the values ±1. If you try to
play a sound sample containing values outside the range [-1, +1], then the speakers will cap any values
above +1 at +1 and any values below -1 at -1. As a result, the sound can come out distorted.

 9 / 17

For example, if you tried to directly play the above sound using our sound libraries, it would be the
same as playing this sound:

1.00 1.00 -0.67 -1.0 0.67 0.33 -1.00 -1.00 0.67 1.00 -0.67 -0.33

This is completely different from the sound that is intended, and will sound distorted.

To address this, we can normalize the sound wave by “squashing” it to fit inside of the range [-1, +1].
To accomplish this, we can find the maximum intensity of the sound at any point (where the intensity
of the sound at a single point in time is the absolute value of the sample at that point), then dividing all
of the sample values in the sound by this maximum value. This forces all the samples in the sound
wave to be within the range [-1, +1]. If no sound is to be played, then you can skip the normalization
step, since the sound you'll be generating have value 0 everywhere.

The Assignment

Your main task is to implement the following method in the ToneMatrixLogic class:

public double[] matrixToMusic(boolean[][] toneMatrix, int column, double[][] samples)

This method takes in three parameters:

• boolean[][] toneMatrix. This is a two-dimensional array representing the lights in the ma-
trix. true values correspond to lights that are on, while false values correspond to lights that
are off. The Tone Matrix is stored such that you would look up the entry at position (row, col)
by reading position toneMatrix[row][col].

• int column. This integer holds the index of the column that is currently being swept across in
the Tone Matrix. Your goal for this function will be to generate a sound sample for this particu-
lar column, and you can ignore all the other columns in the matrix.

• double[][] samples. This two-dimensional array is actually an “array of arrays.” Each entry
of the samples array is itself an array of doubles (a double[]) that holds the sound sample cor-
responding to a particular row in the Tone Matrix. For example, samples[0] is the sound sam-
ple that would be played by lights in row 0 of the Tone Matrix, samples[1] is the sound sam-
ple that would be played by lights in row 1 of the Tone Matrix, etc. (recall that all lights in the
same row as one another all play the same sound). All of these samples have length equal to the
constant ToneMatrixConstants.sampleSize().

Your method should use the values of toneMatrix and column to determine which sounds to play, then
construct a sound sample by adding together the appropriate sounds from samples and normalizing
them. The code that we have provided you will automatically call the matrixToMusic function at the
appropriate rate and play the sounds that you generate, so you don't need to actually play the sound clip
you create.

 10 / 17

Advice, Tips, and Tricks

We strongly suggest that you start off by only testing your Tone Matrix when there is at most one note
playing per column. That way, you don't need to worry about normalizing the sound waves. You can
test your Tone Matrix on the file diagonal.matrix, which will play every note in the matrix one after
the other. For now, don't worry about getting multiple notes playing at the same time.

Once you can get individual notes working correctly, you can move on to getting multiple notes play-
ing at the same time. To do this, you will need to combine together multiple sounds, then normalize the
result. If you are successfully combining together multiple sounds but have not gotten normalization
implemented, then you will probably hear some distorted notes or strange noises when multiple notes
play at the same time. As soon as you have normalization working, the sound should come out beauti-
fully, and you can start to play around with your Tone Matrix!

Watch out for the case where no sounds are being played. In this case, you should not try to normalize
your sound clip, since this would cause you to divide each entry in the sound clip (all of which will be
zero) by the maximum intensity (also zero).

Part Three: Histogram Equalization

Consider the image of a countryside to the right of this
paragraph.* Notice that this picture seems hazy, and that
there is not much contrast in the image. It would be
nicer if we could sharpen the contrast in this picture to
make individual features pop out more. Ideally, we
could sharpen the contrast in this picture to reveal more
details. Doing so might give us back a picture like the
one below the initial, washed-out image.

In this final part of the assignment, you will implement
an algorithm called histogram equalization that sharp-
ens the contrast in an image, often leading to much
clearer pictures.

Luminance

Inside the computer, colors are usually represented as
RGB triplets, with each component ranging from 0 to
255. An RGB triplet encodes the intensity of the red,
green, and blue channels of some particular color. For
example, (255, 0, 0) is an intense red color, (0, 255, 0) is
an intense green color, and (0, 0, 255) is an intense blue
color. However, if you were to look at three squares of
these colors side-by-side, you would not see them as
having the same brightness. The human eye perceives
some colors as brighter than others, much in the same
way that it perceives tones of certain frequencies as
louder than others. Because of this, the green square
would appear dramatically brighter than the red and blue

* Images from http://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg and
http://en.wikipedia.org/wiki/File:Equalized_Hawkes_Bay_NZ.jpg

http://en.wikipedia.org/wiki/File:Equalized_Hawkes_Bay_NZ.jpg
http://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg

 11 / 17

squares and the red square would appear marginally brighter than the blue square. Given an RGB
triplet, it is possible to compute a luminance value that represents, intuitively, the perceived brightness
of a color. Like RGB values, luminance values range from 0 to 255, inclusive.

Manipulating an image by changing its RGB triplets will allow you to transform an image by changing
the intensities of different color channels. In this part of the assignment, you will instead do computa-
tions over the luminances of the pixels in an image rather than the individual color components. This
will change the apparent brightness of different parts of the image, which makes it possible to increase
or decrease the contrast within that image.

Image Histograms

Given an image, there may be multiple different pixels that all have the same luminance. An image
histogram is a representation of the distribution of luminance throughout that image. Specifically, the
histogram is an array of 256 integers – one for each possible luminance – where each entry in the array
represents the number of pixels in the image with that luminance. For example, the zeroth entry of the
array represents the number of pixels in the image with luminance zero, the first entry of the array rep-
resents the number of pixels in the image with luminance one, the second entry of the array represents
the number of pixels in the image with luminance two, etc.

Looking at an image's histogram tells you a lot about the distribution of brightness throughout the im-
age. For example, here is the original picture of the countryside, along with its image histogram:

Compare this to a picture with more contrast, along with its histogram:*

* Image taken from http://anseladams.com/wp-content/uploads/2012/03/1901006-2-412x300.jpg

http://anseladams.com/wp-content/uploads/2012/03/1901006-2-412x300.jpg

 12 / 17

Images with low contrast tend to have histograms more tightly clustered around a small number of val-
ues, while images with higher contrast tend to have histograms that are more spread out throughout the
full possible range of values. In this part of the assignment, you will implement an algorithm that tr ies
to increase an image's contrast by spreading out its histogram through a wider range of luminances.

Related to the image histogram is the cumulative histogram for an image. Like the image histogram,
the cumulative histogram is an array of 256 values – one for each possible luminance. Unlike the im-
age histogram, which is computed directly from the image, the cumulative histogram is computed
purely from the image histogram. The cumulative histogram is defined as follows: if H is the image
histogram and C is the cumulative histogram, then

C[n] = H[0] + H[1] + … + H[n]

For example, the zeroth entry of the cumulative histogram is the zeroth term of the image histogram,
the first entry of the cumulative histogram is the sum of the zeroth and first terms of the image his -
togram, and second entry of the cumulative histogram is the sum of the zeroth, first, and second terms
of the image histogram, etc. As an example, if the first few terms of the image histogram were

 2, 3, 5, 7, 11, 13, …

Then the first few terms of the corresponding cumulative histogram would be

 2, 5, 10, 17, 28, 41, …

One way to get an appreciation for the cumulative histogram is as follows. Given the image histogram,
the nth entry of that histogram describes the total number of pixels with luminance exactly n. Given
the cumulative histogram, the nth entry of that histogram describes the total number of pixels with lu-
minance less than or equal to n.

Below are the cumulative histograms for the two above images. Notice how the low-contrast image
has a sharp transition in its cumulative histogram, while the normal-contrast image tends to have a
smoother increase over time.

 13 / 17

The Histogram Equalization Algorithm

We are now ready to actually describe the histogram equalization algorithm.

Suppose that we have a pixel in the original image whose luminance is 106. Since the maximum possi-
ble luminance for a pixel is 255, this means that the “relative” luminance of this image is 106 / 255 ≈
41.5%, meaning that this pixel's luminance is roughly 41.5% of the maximum possible luminance. As-
suming that all intensities were distributed uniformly throughout the image, we would expect this pixel
to have a brightness that is greater than 41.5% of the pixels in the image.

Similarly, suppose that we find a pixel in the original image whose luminance is 222. The relative lu-
minance of this pixel is 222 / 255 ≈ 87.1%, so we would expect that (in a uniform distribution of inten-
sities) that this pixel would be brighter than 87.1% of the pixels in the image.

The histogram equalization algorithm works by trying to change the intensities of the pixels in the orig-
inal image such that if a pixel is supposed to be brighter than X% of the total pixels in the image, then it
is mapped to an luminance that will make it brighter than as close to X% of the total pixels as possible.
This turns out to be not nearly as hard as it might seem, especially if you have the cumulative his-
togram for the image.

Here's the key idea behind the algorithm. Suppose that an original pixel in the image has luminance L.
If you look up the Lth entry in the cumulative histogram for the image, you will get back the total num-
ber of pixels in the image that have luminance L or less. We can convert this into a fraction of pixels in
the image with luminance L or less by dividing by the total number of pixels in the image:

fractionSmaller=
cumulativeHistogram [L]

totalPixels

Once we have the fraction of pixels that have intensities less than or equal to the current luminance, we
can scale this number (which is currently between 0 and 1) so that it is between 0 and 255, which gives
a valid luminance value. The overall calculation is the following:

newLuminance=
MAX_LUMINANCE⋅cumulativeHistogram [L]

totalPixels

The histogram equalization algorithm is therefore given by the following:

1. Compute the histogram for the original image.

2. Compute the cumulative histogram from the image histogram.

3. Replace each luminance value in the original image using the above formula.

 14 / 17

The Assignment

Your job is to implement these methods in the HistogramEqualizationLogic class:

public class HistogramEqualizationLogic {
/**
 * Given the luminances of the pixels in an image, returns a histogram of
 * the frequencies of those luminances.
 * <p>
 * You can assume that pixel luminances range from 0 to MAX_LUMINANCE,
 * inclusive.
 *
 * @param luminances The luminances in the picture.
 * @return A histogram of those luminances.
 */
public static int[] histogramFor(int[][] luminances) {

/* TODO: Implement this! */
}
/**
 * Given a histogram of the luminances in an image, returns an array of the
 * cumulative frequencies of that image. Each entry of this array should be
 * equal to the sum of all the array entries up to and including its index
 * in the input histogram array.
 * <p>
 * For example, given the array [1, 2, 3, 4, 5], the result should be
 * [1, 3, 6, 10, 15].
 *
 * @param histogram The input histogram.
 * @return The cumulative frequency array.
 */
public static int[] cumulativeSumFor(int[] histogram) {

/* TODO: Implement this! */
}
/**
 * Returns the total number of pixels in the given image.
 *
 * @param luminances A matrix of the luminances within an image.
 * @return The total number of pixels in that image.
 */
public static int totalPixelsIn(int[][] luminances) {

/* TODO: Implement this! */
}
/**
 * Applies the histogram equalization algorithm to the given image,
 * represented by a matrix of its luminances.
 * <p>
 * You are strongly encouraged to use the three methods you have implemented
 * above in order to implement this method.
 *
 * @param luminances The luminances of the input image.
 * @return The luminances of the image formed by applying histogram
 * equalization.
 */
public static int[][] equalize(int[][] luminances) {

/* TODO: Implement this! */
}

}

 15 / 17

We recommend implementing the methods in this class in the order in which they appear.

To help you test out your implementation, we have provided you with a test harness that will run your
methods on a variety of different inputs. If you run this program without implementing any of the
methods, you will see a window like this:

Each of the colored rectangles represents a single test case that we have written to check whether your
implementation works. If your implementation of any of the initial methods is incorrect, there is a
good chance that it will give back an incorrect answer for one of these tests. Consequently, a test fail -
ure indicates that you probably have a bug somewhere in the indicated method. On the other hand, if
all the tests pass, that probably (but not definitely) means that your implementation is working cor-
rectly.

The result of each test is color-coded as follows:

• Green: This indicates that the test passed successfully. You should aim to make all tests green!

• Yellow: This indicates that the test is still running. Normally, tests should complete quickly, so
if you see this rectangle it likely means that your code contains an infinite loop.

• Orange: This indicates that the test completed, but that your method did not pass the test.

• Red: This indicates that the test failed to complete. This probably means that your method
caused an error before returning. You can click on the red rectangle to see exactly what excep-
tion was generated.

The tests in this program only cover the first three methods. You can check whether the equalize
method works by running the HistogramEqualization program we've provided, which will use your
equalize method to adjust the contrast in an image. A snapshot of this program is shown below:

 16 / 17

Advice, Tips, and Tricks

This part of the assignment is probably the most complicated, with more math required than the other
steps. A small math error in one step can easily lead to grossly incorrect values later on, causing
strangely distorted results.

To combat this, we strongly recommend using our testing infrastructure when writing this program and
not trying to write the entire program in one sitting without testing it. Build each method indepen-
dently and test them as you go. Once you think you have everything working, then try to to write the
final method, which glues everything together.

Also, be careful with integer division and casting in the last step. You will be dividing ints by one an-
other, and it is extremely easy to accidentally get 0 for your answers by using integer division and
rounding down.

Note that the histogram equalization algorithm that you will be implementing will always convert color
images to grayscale images in order to show off the high contrast. Don't worry if the colors aren't
showing up correctly; they're not expected to.

 17 / 17

Possible Extensions

There are a huge number of possible extensions for this assignment. Here are a few suggestions to help
give you some ideas:

• Steganography: You could consider using all three color channels to store hidden information,
not just the red channel. This would let you hide images inside the color image that are larger
than that original image, or which are not just black and white. You could also try to find a way
to encode text information inside of a color picture by using multiple different pixels to store a
single character.

• Tone Matrix: What kind of music could you make if you could turn the lights on in different
colors, where each color played a different instrument? Or what if you changed the sound sam-
ples so that the tone matrix sounded like a concert piano?

• Histogram Equalization: Could you try balancing the colors in the image, not just the lumi-
nance? Can you brighten or darken the image by shifting the histogram upward or downward?

Some of these extensions might require you to make changes to some of the starter files that we pro-
vide. You can download the complete source for each program from the course website and use mod-
ify them to your heart's content. We have tried to make these programs as easy to read as possible,
though they do use some language features we haven't discussed yet. You might want to read over
Chapter 10 of The Art and Science of Java to learn more.

Good luck!

	Introduction
	Part One: Steganography*
	The Assignment
	Advice, Tips, and Tricks

	Part Two: Tone Matrix*
	The Assignment
	Advice, Tips, and Tricks

	Part Three: Histogram Equalization
	Luminance
	Image Histograms
	The Histogram Equalization Algorithm
	The Assignment
	
	Advice, Tips, and Tricks

	Possible Extensions

